Pricing Single Name Credit Derivatives

Vladimir Finkelstein

7th Annual CAP Workshop on Mathematical Finance Columbia University, New York December 1, 2000

Outline

- Realities of the CDS market
- Pricing Credit Default Swaps
- Generating Clean Risky Discounting Curve
- Effect of Recovery Value
- Hedging CDS
- Pricing Default in Foreign Currency

Credit Derivatives – Size of the Market

Approximately 40% of the market notional come from Credit Default Swaps

Realities of CDS Market

- Standardized ISDA Credit Derivatives Definitions (1999) provides industry-wide standards and ease of execution
- Two-way Credit Default Swap market in Investment Grade and Emerging Markets, nascent HY CDS market
 - High spread volatility: from 40% up to 300%
 - Risk management with a lack of liquidity:
 Short end of the yield curve Vs. long end
 Gap risk
- Wide range of spreads: from 30 bp to "the sky is the limit"
- Default is not a theoretical possibility but a fact of life (Russia, Ecuador, Laidlaw, etc)
- Reasonably deep cash market with a variety of bonds
- Traded volatility in EM (mostly short maturities)
- Illiquid longer term volatility through options on CDS and Asset Swaps
- Increase in active risk management and more rational credit pricing
- Widespread opportunities to exploit pricing anomalies

Benchmark Curves for a Given Name

Default-free Discounting Curve (PV of \$1 paid with certainty)

$$D(0,t) = E_0 \left[\exp \left(-\int_0^t r_\tau d\tau \right) \right] = \exp \left(-\int_0^t \hat{r}_\tau d\tau \right)$$

 Clean Risky Discounting Curve [CRDC] (PV of \$1 paid contingent on no default till maturity, otherwise zero)

$$Z(0,t) = E_0 \left[\exp \left(-\int_0^t (r_\tau + \lambda_\tau) d\tau \right) \right]$$

 $\lambda_{ au}d au$ has a meaning of default probability at time au over time period d au

$$Z(0,t) = D(0,t) * Q(0,t)$$

$$Q(0,t) = \exp\left(-\int_{0}^{t} \hat{\lambda}_{\tau} d\tau\right)$$

where Q(0,t) is survival probability till time t, and $\hat{\mathcal{A}}_{\tau}$ is usually interpreted as forward (not expected!) probability of default per unit time

Credit Default Swap

A basic credit derivatives instrument: ABC is long default protection

- REC is a recovery value of a reference bond
- Reference bond: no guarantied cash flows

cheapest-to-deliver

cross-default (cross-acceleration)

 Assume same recovery value REC for all CDS of the same seniority on a given name

Pricing CDS

- For corporate and EM coupon bonds a default claim is (Principal + Accrued Interest)
- Recovery value has very little sensitivity to a structure of bond cash flows
- For this Face Value Claim, REC = R, and PV of CDS is given by

$$PV_{CDS} = -S_T E_0 \begin{bmatrix} \int_0^T e^{-\int_0^t (r_{\tau} + \lambda_{\tau}) d\tau} dt \\ 0 \end{bmatrix} + E_0 \begin{bmatrix} \int_0^T (1 - R_t) \lambda_t e^{-\int_0^t (r_{\tau} + \lambda_{\tau}) d\tau} dt \\ 0 \end{bmatrix}$$
(1)

- Assume $R_t = R$, $\overline{R} = E(R)$, and no correlation of R with spreads and interest rates
- As Eq (1) is linear in R, CRDC just depends on expected value \overline{R} , not on distribution of R
- Put PV of CDS = 0, and bootstrapping allows us to generate a clean risky discounting curve

Generating CRDC

- A term structure of par credit spreads $S_{T,par}$ is given by the market
- To generate CRDC we need to price both legs of a swap
- No Default (fee) leg $S_{T,par}E_0 \begin{bmatrix} \int\limits_0^T e^{-\int\limits_0^t (r_\tau + \lambda_\tau) d\tau} dt \end{bmatrix} = S_{T,par}\int\limits_0^T Z \ (0,t)dt$

Default leg

$$E_{0} \begin{bmatrix} \int_{0}^{T} (1 - R_{t}) \lambda_{t} e^{-\int_{0}^{t} (r_{\tau} + \lambda_{\tau}) d\tau} dt \end{bmatrix} = (1 - \overline{R}) E_{0} \begin{bmatrix} \int_{0}^{T} \lambda_{t} e^{-\int_{0}^{t} (r_{\tau} + \lambda_{\tau}) d\tau} dt \end{bmatrix} = (1 - \overline{R}) \int_{0}^{T} \widetilde{\lambda}_{t} Z \quad (0, t) dt$$

• If correlation between credit spreads and interest rates is not zero,

$$\widetilde{\lambda}_{\tau} \neq \widehat{\lambda}_{\tau}$$

Correlation Adjustment

• Need to take into account correlation between spreads and interest rates to calculate adjusted forward default probability $\hat{\lambda} = \hat{\lambda} + a_{\lambda}$

Default-free rate \hat{r} conditional on no default also needs to be adjusted as $\tilde{r} = \hat{r} - a_1$

$$-\frac{dZ(0,t)}{dt}$$

$$= E_0 \left[(r_t + \lambda_t) \exp\left(-\int_0^t (r_\tau + \lambda_\tau) d\tau\right) \right]$$
and

$$\tilde{s} + \tilde{r} = \hat{s} + \hat{r}$$

- For high spreads and high volatilities an adjustment is not negligible
- For given par spreads forward default probability decreases with increasing volatility, correlation and level of interest rates and par spreads

Recovery Value

 For the Face Value Claim the price of a generic coupon bond can be approximated pretty accurately as

$$B(t,t_N) = \sum_{n} C_n Z \quad (t,t_n) + Z \quad (t,t_N)$$

$$+ \overline{R} \left[1 - \sum_{n}^{N} \Delta_n \widetilde{L}_{n-1} Z \quad (t,t_n) - Z \quad (t,t_N) \right]$$

where \widetilde{L}_{n-1} is forward default-free floating rate for period n

- Bond price goes to recovery value in default
- For the same default risk and recovery value, high coupon bond should trade at higher credit spread than a low coupon bond
- There are no generic risky zero coupon bonds with non zero recovery
- Using CRDC and given recovery value structure one can create any synthetic instrument

More on Recovery Value

- Other ways to model recovery value:
 - Recovery of the Risky Price (Duffie-Singelton):
 Default claim is a traded price just before the default event
 - Recovery of the Riskless Price:
 - Default claim is given by default-free PV of the bond cash flows at the moment of default
 - For a zero coupon bond this default claim corresponds to the claim on a face value at maturity
 - Both methods operate with risky zero coupon bonds with embedded recovery values. One can use conventional bond math for risky bonds
- Both methods are not applicable in the real markets

Effect of Recovery Value Assumptions on Relative Value

- Implications for pricing off-market deals, synthetic instruments, risk management
- Example: Relative bond value
 Same name, seniority and maturity, different coupons
- For Recovery of Face Value $B_C B_{C'} = \sum_{n=1}^N (C_n C'_n) D(0, t_n) Q(0, t_n)$
- For Recovery of Risky/Riskless Price $B_C B_{C'} = \sum_{n=1}^N (C_n C'_n) Z_R(t,t_n)$

Risky zero coupon bonds with embedded recovery value are given by

$$\begin{split} Z_R(0,t) &= E\left\{\exp\left[-\int_0^t \left(r_\tau + (1-R)\lambda_\tau\right)\!d\tau\right]\right\} \approx D(0,t)Q(0,t)^{(1-\overline{R})} &\quad \text{for Risky Claim} \\ Z_R(0,t) &= D(0,t)\Big[(1-\overline{R})Q(0,t) + \overline{R}\Big] &\quad \text{for Riskless Claim} \end{split}$$

Default Probability and Recovery

• For a given par credit spread curve default probabilities depend on recovery

value definition

- Par Spreads = 6%
- Volatility = 40%
- R = 0.4

Hedging CDS books

- Two types of exposures: credit spread risk, default risk
- Using N hedging instruments (bonds or CDS) on can hedge a CDS portfolio against (N-1) predetermined factors for spread moves + default
- Different Recovery Value definitions result in different hedging positions
- Robustness of hedging depends on spread curve interpolation method
- Transaction cost may be significant: need to optimize hedging strategy
- When hedging with bonds, bond/CDS basis risk can be an issue
- In EM cheapest-to-deliver option is equivalent to first-to-default feature
- For HY CDS equity options/shares should be considered as possible hedging instrument

Pricing Default in Foreign Currency

 Assume that one needs to sell default protection in foreign currency and hedge it by buying protection in \$.

Q: At what level to sell?

- If there is no interdependence between credit spreads and forward FX, implied default probabilities should stay the same in foreign currency
- Due to the correlation between default spread and each of FX, dollar interest rates, and foreign interest rates, the default probability in a foreign currency will differ from that in dollars
- Two sources for the adjustment:
 - Devaluation conditional on default
 - Day-to-day spread/FX/IR correlation

Adjustment for FX jump conditional on Default

- FX rate jumps by -α % when default occurs (e.g. devaluation)
- As probability of default (and FX jump) is given by λ_t , under "no default" conditions the foreign currency (FC) should have an excessive return in terms of USD (DC) given by $\lambda_t * \alpha$ to compensate for a possible loss of value
- Consider a FC clean risky zero coupon bond (R=0) with an excessive "no default" return λ_t^F that compensates for a possible default
- The position value in DC = (Bond Price in FC) * (Price of FC in DC)
- An excessive return of the position in DC is $\lambda_t * \alpha + \lambda_t^F$
- The position should have the same excessive return as any other risky bond in DC which is given by λ_{t}
- To avoid arbitrage the FC credit spread should be

$$\lambda_t^F = \lambda_t * (1 - \alpha)$$

An adjustment can be substantial

Quanto Spread Adjustment

- In the no default state, correlation between FX rate and interest rates on one side and the credit spread on another results in a quanto adjustment to the credit spread curve used to price a synthetic note in FC
- Consider hedges for a short in synthetic risky note in FC
 - sell default protection in DC
 - long FC, short DC
- If DC strengthens as spreads widen, in order to hedge the note we would need to buy back some default protection and sell the foreign currency that depreciated.
- Our P&L would suffer and we would need to pass this additional expense to a counter party in a form of a negative credit spread adjustment
- For high correlation the adjustment can be significant

Quanto Adjustment (cont'd)

 Adjustment for a DC flat spread curve of 600 bp. Spread MR is important

• Spread adjustment decreases with increasing mean reversion and constant spot volatility. α =0.2, S=6%, r\$=5%, rf=20%, σ \$=80%, σ \$=12.5%, β \$= 0, σ f=40%, β \$=0.5, σ x=20%, ρ \$\$=0, ρ f\$=0.5, ρ x\$=0.7. All curves are flat.

Quanto Adjustment (cont'd)

Assumptions on spread distribution are important

 Difference between normal and log-normal adjustment decreases as mean reversion is increased for constant spot volatility

Conclusions

- For single-name instruments pricing is well understood
- Recovery value definition can have an significant effect on pricing and hedging
- Hedging CDS with bonds: basis risk cannot be ignored
- The distinction between EM and FI credit derivatives gradually disappears
- Consistency of pricing and hedging methods becomes more and more important