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Derivatives pricing

l Based on the “Fundamental Theorem of
Finance”:
– Either there is arbitrage or there is an equivalent

martingale measure (roughly speaking)

l Equivalence: on (Ω,F), P is equivalent to Q ó
– (P(A)=1óQ(A)=1 for all A in F) or

– P << Q and Q << P

l All we need to know is the equivalence class of
the “physical” probability



Identifying the equivalence class of P

l Let X be the price of any security expressed in
terms of a numeraire security (so 1 is a
security price process).

l For there to be an e.m.m., X must be a
semimartingale

l                                                            w. prob. 1

   for suitable sequences of partitions
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A necessary condition for
equivalence

l We must correctly model  the quadratic
variation process

l Sometimes that’s enough:
– Suppose [X,X]t=t for all t.  Then X is continuous
– If X is also a local martingale, then Lévy’s theorem

says that X is a standard Brownian motion.

l Question:  When is knowing the law of the
quadratic variation process sufficient for
obtaining the law of a martingale?



Not always!

l Consider X defined by

– (W is standard Brownian motion).

l Clearly

l But:  [-X,-X]t = [X,X]t and X and -X have
different laws!
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Which martingales are
characterized by their quadratic
variation?

l Let M be the class of continuous local
martingales starting at 0.

l Definition: M∈M is called divergent if [M,M] ∞ =
∞ a.s.  Let D be the class of divergent M∈M.

l Theorem 1.  Let M∈D have absolutely
continuous quadratic variation with
d[M,M]t/dt > 0.  Then

  (*)  (N∈M, [N,N] =d [M,M] implies N =d M)   =>

       M is a Gaussian process



Proof of Theorem 1

l Suppose M is a divergent continuous local
martingale, and that M is not Gaussian.

l Dambanis and Dubins-Schwartz (DDS)
showed that Mt=B[M,M](t) for some Brownian
motion B.

l If [M,M] were a deterministic process, then
(from this representation) M would be
Gaussian.

l Hence d[M,M](t)/dt is not a deterministic
process



l We now construct (adapted) processes W and
Y on some (other) filtered space (Ω,F,P), (Ft),
with W a Brownian motion and Y having the

   same distribution as X where Xt=
and W and Y are not independent.

l Define the martingale N by N=Y • W.

l By our construction we have [N,N] =d [M,M]

l We need to show that N and M do not have the
same distribution.  And this would violate
condition (*) of the theorem.

dt
tMMd )](,[



A result of Vostrikova and Yor (1999)

l Definition A continuous local martingale is
called Ocone if, in its DDS decomposition, B
and [M,M] are independent.

l  Ocone showed:  A continuous local martingale
X is Ocone ó X =d e • X for every predictable
process e satisfying |e|=1.

l An M satisfying condition (*) of our theorem
would automatically satisfy this weaker
condition.  Hence M is Ocone.



Vostrikova and Yor showed:

l Let {Wt,Ft} be a Brownian motion and {Yt} be
strictly positive, Ft-adapted with
and

l Then N=Y•W is Ocone iff W and Y are
independent, and we purposely chose them
not to be independent.  Hence N is not Ocone.
So N and M cannot have the same distribution.
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The above result was negative

l It says:  If the distribution of a martingale is
characterized by that of its [,] process, then the
martingale must be Gaussian.

l For a more positive result …



Suppose we consider diffusions:

l For any real Borel measurable function f,
define Z(f)=the set of x such that f(x)=0, and
define I(f) = the set of x such that (1/f) is not
locally square integrable at x.

l  Example:  If f has a continuous first derivative
everywhere then  I(f)=Z(f).



Theorem 2

l Suppose g1 and g2 are Borel measurable
functions on R, and I(gi)=Z(gi) for i=1, 2.  Let
(X(i),W(i)), (Ω(i),F(i),P(i)) be weak solutions to the
equations X0=0, dXt=gi(Xt)dWt for i=1,2.

   If [X(1),X(1)] =d [X(2),X(2)] then either X(1) =d X(2)

or  X(1) =d –X(2).



Proof of Theorem 2

l Not trivial.  Uses:
– Reduction to the case gi≥0.
– Showing that the quadratic variation of solutions

being the same implies g1 is essentially equal to g2.

– A result of Engelbert and Schmidt (1984):
For every initial distribution µ, the equation
dXt=g1(Xt)dWt has a solution which is unique in the
sense of probability law if and only if I(g1)=Z(g1).



A final example

l Take g1(x)=|x|+1

l Let (X,W) be a weak solution to dXt=g1(Xt)dWt

with X0=0.
l Clearly Z(g1)=I(g1)=∅ .

l Then d(-Xt)=-g1(Xt)dWt=g1(-Xt)(-dWt) so the
(Y,B), with Y=-X, B=-W, is also a weak solution.
Since weak uniqueness holds, the distribution
of X and Y=-X must be the same.



l Theorem 2 tells us:  this X is the only solution to
dYt=g(Yt)dWt with Y0=0 (for any g which stays
away from 0) having quadratic variation process
equal to that of X. (no +/- problems; symmetric)

l But X is not Gaussian.  Hence (by Theorem 1)
there must be some other martingale starting at
0 with the same quadratic variation as X.



Here are some:

l Choose an a>0

l Define Y by:

l Y is a continuous martingale, [Y,Y]=[X,X] and
Y0=0.
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If you’re interested in a copy of
Diego’s thesis

l You could contact Diego (is he here?)

l You could write to me:
heath@andrew.cmu.edu
and I’ll send a pdf file vie email


