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Derivatives pricing
S

e Based on the “Fundamental Theorem of
Finance”:

— Either there Is arbitrage or there is an equivalent
martingale measure (roughly speaking)

e Equivalence: on (W,F), P is equivalentto Q <
- (P(A)=1=Q(A)=1forall Ain F) or
- P<<Qand Q<<P

e All we need to know Is the equivalence class of
the “physical” probability



ldentifying the equivalence class of P

e Let X be the price of any security expressed Iin
terms of a numeraire security (so 1 i1s a
security price process).

e For there to be an e.m.m., X must be a
semlmartlngale

° lim X (0)* +a(><(t(”‘)) X(&1)* =[X,X], w. prob. 1
for suitable sequences of partitions



A necessary condition for
eguivalence

e \We must correctly model the quadratic
variation process

e Sometimes that's enough:
— Suppose [X,X]=t for all t. Then X is continuous
- If X'is also a local martingale, then Léevy’s theorem
says that X is a standard Brownian motion.
e Question: When is knowing the law of the
guadratic variation process sufficient for
obtaining the law of a martingale?



Not always!
c_

. . t )
e Consider X defined by X, = V.dw, _ W - t
0

- (W Is standard Brotwnian motion).

o Clearly [x,X], = C)stds
0

e But: [-X,-X], = [X,X]; and X and -X have
different laws!



Which martingales are

characterized by their quadratic

variation?

o000 ]

e Let M be the class of continuous local
martingales starting at O.

o Definition: MIM is called divergent if [M,M] , =
¥ a.s. Let D be the class of divergent MI M.

e Theorem 1. Let MID have absolutely

continuous guadratic variation with
d[M,M]/dt > 0. Then

(*) (NTM, [N,N] =¢[M,M] implies N =¢ M) =>
M is a Gaussian process




Proof of Theorem 1
]

e Suppose M is a divergent continuous local
martingale, and that M Is not Gaussian.

e Dambanis and Dubins-Schwartz (DDS)
showed that M=B, \;jy fOr some Brownian
motion B.

e If [M,M] were a deterministic process, then
(from this representation) M would be
Gaussian.

e Hence d[M,M](t)/dt is not a deterministic
process



e \We now construct (adapted) processes W and
Y on some (other) filtered space (W,F,P), (F,),

with W a Brownian motion and Y having the

same distribution as X where X.= Jd[M MO~
and W and Y are not independent.

e Define the martingale N by N=Y - W.

e By our construction we have [N,N] =4 [M,M]

e \We need to show that N and M do not have the
same distribution. And this would violate
condition (*) of the theorem.




A result of Vostrikova and Yor (1999)
c_

e Definition A continuous local martingale is
called Ocone If, in its DDS decomposition, B
and [M,M] are independent.

e Ocone showed: A continuous local martingale
X is Ocone < X =d e - X for every predictable
process e satisfying |e|=1.

e An M satisfying condition (*) of our theorem

would automatically satisfy this weaker
condition. Hence M is Ocone.



Vostrikova and Yor showed:
S

o Let {W,F} be a Brownian motion and {Y} be
strictly. posmve F-adapted with O(st < i<’

and O(st =

e Then N=Y-W is Ocone Iff W and Y are

iIndependent, and we purposely chose them
not to be independent. Hence N is not Ocone.
So N and M cannot have the same distribution.



The above result was negative
-

e It says: If the distribution of a martingale is
characterized by that of its [,] process, then the
martingale must be Gaussian.

e For a more positive result ...



Suppose we consider diffusions:
c_

e For any real Borel measurable function f,
define Z(f)=the set of x such that f(x)=0, and
define I(f) = the set of x such that (1/f) is not
locally square integrable at x.

e Example: If f has a continuous first derivative
everywhere then [(f)=Z(f).



Theorem 2
]

e Suppose g, and g, are Borel measurable
functions on R, and I(g;)=2(g;) for I=1, 2. Let
(XO,W0), (W), FO PW) be weak solutions to the
equations X,=0, dX.=g;(X,)dW, for 1=1,2.

If [X(D,X®] =d [X@),X@)] then either X1 =d X()
or X@) =d _X(2)



Proof of Theorem 2
]

e Not trivial. Uses:
- Reduction to the case g3 0.

-~ Showing that the quadratic variation of solutions
being the same implies g, Is essentially equal to g..
— A result of Engelbert and Schmidt (1984):
For every initial distribution m the equation
dX=9g,(X))dW, has a solution which is unique in the
sense of probability law if and only if 1(g,)=2(g,).



A final example

S

e Take g,(x)=[x|+1

e Let (X,W) be a weak solution to dX,=g,(X,)dW,
with X,=0.

e Clearly Z(g,)=I(g,)=£.

e Then d(-X)=-g,(X)dW=g,(-X)(-dW,) so the
(Y,B), with Y=-X, B=-W, Is also a weak solution.
Since weak unigueness holds, the distribution
of X and Y=-X must be the same.



e Theorem 2 tells us: this X is the only solution to
dY.=g(Y,)dW, with Y,=0 (for any g which stays
away from 0) having quadratic variation process
equal to that of X. (no +/- problems; symmetric)

e But X Is not Gaussian. Hence (by Theorem 1)
there must be some other martingale starting at
0 with the same guadratic variation as X.



Here are some:

« 1]
o gh?oseYatr)\ a>OY { X iftE£a
efine : = .
° Y Ty L x ift?a

e Y is a continuous martingale, [Y,Y]=[X,X] and
Y ,=0.



If you're interested in a copy of
Diego’s thesis

c_
e You could contact Diego (is he here?)

e You could write to me:
heath@andrew.cmu.edu
and I'll send a pdf file vie emalll



